Programmable Potentials: Approximate N-body potentials from coarse-level logic
نویسندگان
چکیده
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the "coefficients" of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.
منابع مشابه
Parameterization of Coarse-Grained Molecular Interactions through Potential of Mean Force Calculations and Cluster Expansion Techniques
We present a systematic coarse-graining (CG) strategy for many particle molecular systems based on cluster expansion techniques. We construct a hierarchy of coarse-grained Hamiltonians with interaction potentials consisting of two, three and higher body interactions. In this way, the suggested model becomes computationally tractable, since no information from long n-body (bulk) simulations is r...
متن کاملMany-body interactions and correlations in coarse-grained descriptions of polymer solutions.
We calculate the two-, three-, four-, and five-body (state-independent) effective potentials between the centers of mass (c.m.'s) of self-avoiding walk polymers by Monte Carlo simulations. For full overlap, these coarse-grained n-body interactions oscillate in sign as (-1)(n), and decrease in absolute magnitude with increasing n. We find semiquantitative agreement with a scaling theory, and use...
متن کاملA rule-based evaluation of ladder logic diagram and timed petri nets for programmable logic controllers
This paper describes an evaluation through a case study by measuring a rule-based approach, which proposed for ladder logic diagrams and Petri nets. In the beginning, programmable logic controllers were widely designed by ladder logic diagrams. When complexity and functionality of manufacturing systems increases, developing their software is becoming more difficult. Thus, Petri nets as a high l...
متن کاملA fuzzy-based prognosis of ore mineralization potentials in Ramand region (Qazvin province)
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the volcanic units. In this research work, we used the GIS facilities for modeling the Ramand geo-sp...
متن کاملOrientation-dependent coarse-grained potentials derived by statistical analysis of molecular structural databases
We present results obtained for anisotropic potentials for protein simulations extracted from the continually growing databases of protein structures. This work is based on the assumption that the detailed information on molecular conformations can be used to derive statistical (a.k.a. ‘knowledge-based’) potentials that can describe on a coarse-grained level the side chain–side chain interactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016